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1 Overview

The Jib processor is a general-purpose Instruction Set Architecture (ISA). Each processor instruction is
designed to take up exactly one word of memory. For Jib, each word takes up 32 bits; however, memory is
addressable at the byte level. In cases where signed arithmetic is performed, signed integers are encoded
using the two’s-complement format. Jib also supports 32-bit floating point numeric algebra.

1.1 Registers

There are 32 total registers present on the Jib. These are defined generally as follows in Table 1. Note
that, as Jib is a 32-bit architecture, this means that each register is 32 bits wide. While there are
specifications between general-purpose and system-level registers, any register is addressable and usable
via standard instructions equally.

Register Type Usage
R0 Reserved Program Counter
R1 Reserved Processor Status Flags
R2 Reserved Stack Pointer
R3 Reserved Load Offset
R4 Reserved Return Register
R5 Reserved Argument Base Register
R6 GP (C/Buoy) Function Local Variables
R7 GP (C/Buoy) Function Temporary Variables
R8 GP (C/Buoy) Spare Register

R9-R31 GP General Purpose Register

Table 1: Registers R0 through R5 are reserved for system-level parameters. R6 through R8 are reserved
for C/Buoy functionality, by convention. All remaining registers are general-purpose.

The program counter indicates the next instruction to be read. At the beginning of the processor
cycle, the instruction at the memory address of the program counter is read in and processed. Then,
the program counter is incremented at the end of each instruction cycle. If this value is needed to be
modified, it is recommended to use the absolute jmp, or the relative jump instruction jmpr (see Section
2), as opposed to writing to the register directly. This will automatically account for the increment at
the end of the instruction cycle.

The global stack pointer maintains the global stack, as defined in Section 1.4. This provides the
absolute address of the current stack location. Thus, when the stack is empty, it points to the stack base
address, and when the stack is completely full it points to the memory location just above the last stack
entry, or the base address plus the stack size. This value should not be edited by-hand to maintain the
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consistency of the program execution, but is instead modified by the stack instructions push, pop, popr,
call, ret, retint, and int, as well as hardware interrupts. This should be loaded by the init program
by assembly, however, to provide the default base location for the stack.

The return value instruction is intended to store the result of a function call, made using the call

instruction. When the processor status flags are replaced with the caller’s flags after the ret instruction
is called, the return value is the only register that remains unchanged.

The processor status flags indicate the current setup for the processor. Currently, the following flags
are assigned, as noted in Table 2.

Bit Value
0 Interrupt Enable
1 Interrupt Executing
2-7 Interrupt Number
8 Carry
. . . . . .
31 . . .

Table 2: Processor status flags provide a window into the current processor state

This provides both a means to set and to read the current processor state values to ensure that the
proper operating mode is configured for the currently-running program. This is maintained and replaced
when ret and retint are called, so within an interrupt or function call, it is not necessary to replace
the processor flags with those of the caller.

1.2 Overall Instruction Syntax

Since the architecture of the Jib is 32-bit, this means that the basic word, and therefore instruction
format, exists in a 32-bit format. Note that, however, memory addresses are with respect to byte
boundaries. Words are stored in big-endian format, meaning the most-significant component of the
word is associated with the first byte in the word, while the least-significant component of the word is
associated with the last byte in the word. Instructions must be placed with a base at a memory location
with a byte alignment of four (e.g. 0, 4, 8, 12, etc.). General data may be placed and accessed from any
byte alignment. The general instruction format is listed in Table 3. The first byte, Byte 0, is always split
into two components - the ID, composing the first 4 bits of the instruction, and the SubID, composing
the next 4 bits of the instruction.

Byte 0 Byte 1 Byte 2 Byte 3
Location 0xFF000000 0x00FF0000 0x0000FF00 0x000000FF
Usage opcode arg0 arg1 arg2
Details ID (0xF0), SubID (0x0F) - - -

Table 3: The Jib instruction format typically has one opcode and three possible arguments associated
with a particular opcode

This is contrasted with the typical assembly language formatting, which is provided as

instruction <arg2> <arg1> <arg0>

where the number of arguments depends on the required number of arguments for the instruction.
Certain arguments require type information. When this is present, the type code resides in the upper

3 bits of the argument byte (0xE0), while the register resides in the lower 5 bits (0x1F). Type codes are
provided in Table 4.

1.3 Resetting

On a hard-reset, all registers will be reset to 0 and memory values will be reset to their default values.
The data parameter in memory at the hard-reset vector, stored at memory location 0, will be used as
the reset vector.
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Type Code Size in Bytes Description
U8 1 1 Unsigned byte
I8 2 1 Signed byte
U16 3 2 Unsigned short
I16 4 2 Signed short
U32 5 4 Unsigned integer
I32 6 4 Signed integer
F32 7 4 32-bit floating point

Table 4: The supported type codes that are associated with certain instruction codes

On soft-reset, as called by the reset the program counter will be assigned the value contained in the
soft-reset vector, which is stored at memory location 1. All of the other registers are reset to their default
value of 0. Processor memory will be left unchanged and processor execution is then started.

On any reset, interrupts will be disabled by default, and must be enabled manually.

1.4 The Stack

The stack pointer provides the absolute address of the stack pointer. The pointer points to the memory
location just above the current stack location. If the stack is empty, the stack pointer points to the base
address. Note that the base address is user-selectable, and there are no protections for stack under or
overflow conditions, outside of wrapping around the minimum or maximum memory address, where the
processor will error and halt.

1.5 Interrupts

Interrupts provide a means to interrupt the current flow of execution and run a separate method. There
are two types of interrupts - hardware interrupts, which originate by request of an external hardware de-
vice, and software interrupts, which originate from a specific instruction. When an interrupt is triggered,
the flow of program execution is interrupted before the next instruction is started. The current register
state is stored on the stack, and the program counter is replaced with the value in the corresponding
interrupt vector. The status register is also updated with the current interrupt execution data. Then,
the program execution continues from this new location.

The Jib supports 32 software and 32 hardware interrupts, as shown in Table 5. The hardware
interrupt vectors are stored in memory at locations 0x100 for interrupt 0 though 0x180, exclusive, for
interrupt 31. Similarly, the software interrupts are stored in memory at memory addresses 0x180 for
interrupt 0 through 0x200, exclusive, for interrupt 31.

Type 0 1 2 . . . 29 30 31
Hardware 0x100 0x104 0x108 . . . 0x174 0x178 0x17C

Software 0x180 0x184 0x188 . . . 0x1F4 0x1F8 0x1FC

Table 5: Interrupt vector locations for both hardware and software interrupts

Interrupts are processed by the interrupt controller. This stores all interrupt requests and provides
the CPU the next interrupt to process based on their priority. Note that, if a vector has a value of zero,
that interrupt vector is considered to be disabled and that interrupt will effectively be disabled and not
able to be run.Once interrupts are re-enabled, if this queue is not empty, then that interrupt will be run,
in priority-order.

At the conclusion of any interrupt, the retint instruction should be called. This will replace the
current register state with the values provided off the stack and resume program execution from the
location right after the interrupt was called. It will also clear the It should be noted that, if any values
were pushed onto the stack during the interrupt handler, they should be popped off the stack prior to
the retint call to avoid corrupting the program state. The retint instruction will return from the
interrupt handler and allow the CPU to mark this interrupt as completed, so that it can move on to
the next interrupt handler, or stop interrupt handling and resume normal operation if there are no more
interrupts to be run. By clearing the interrupt execution status at the end of the handler, this prevents
duplicates of the same interrupt from being run, preventing a execution errors if a hardware device spams
the associated hardware interrupt.
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2 Instructions and Assembly Code

All available instructions are listed in Table 6. Note that any invalid instruction that is not provided in
the table below results in an immediate halt of the processor. Note that, in the below logic, any indication
where PC is incremented indicates that the standard PC += 1 to move to the next instruction will be
replaced by the logic provided in the description field. Note that, based on the type, for addresses, this
can affect either just the memory location assigned by the register (for a single-byte type), the register
byte and the following byte (for a two-byte type), or the register byte and the following three bytes (for
a four-byte type). The user must ensure that the appropriate locations are valid and able to be written
to when setting up the registers and types for particular instructions. Instruction formats, as denoted in
the “Format ID” column, are located in Table 7.

Format ID Opcode Assembly Description
ID SubID

A 0 0 noop No Operation
A 0 1 reset $PC = Reset Vector, R[0-15] = 0

B 0 2 int <imm> Trigger software interrupt number imm
C 0 3 intr [a] Trigger software interrupt number R[a]
A 0 4 retint ∀i∈[31→0] R[i] = mem[--$SP], ++$PC
C 0 5 call [a] ∀i∈[0→31] mem[$SP++] = R[i]; $PC = R[a]

A 0 6 ret ∀i∈[31→0],i ̸=$ret R[i] = mem[--$SP], ++$PC
C 0 7 push [a] mem[$SP += 4] = R[a]

A 0 8 pop $SP -= 4

C 0 9 popr [a] R[a] = mem[$SP -= 4]

C 0 10 jmp [a] $PC = R[a]

C 0 11 jmpr [a] $PC += R[a]

B 0 12 jmpri <imm> $PC += Imm (Signed)
A 0 15 halt Stop Program Execution
G 1 0 ld [a] [b] R[a] = mem[R[b]]

G 1 1 ldr [a] [b] R[a] = mem[$PC + R[b]]

E 1 2 ldi [dst] <imm> R[dst] = Im

E 1 3 ldri [dst] <imm> R[dst] = mem[$PC + Im]

D 1 4 ldn [a] R[a] = mem[$PC + 4], $PC += 8

D 1 5 ldno [a] R[a] = mem[$LDO + PC + 4], $PC += 8

G 1 6 sav [a] [b] mem[R[a]] = R[b]

G 1 7 savr [a] [b] mem[$PC + R[a]] = R[b]

F 1 8 copy [a] [b] R[a] = R[b]

H 1 9 conv [a] [b] R[a] = R[b]

I 2 0 teq [dst] [a] [b] If R[a] == R[b] R[dst] = 1, Else R[dst] = 0

I 2 1 tneq [dst] [a] [b] If R[a] != R[b] R[dst] = 1, Else R[dst] = 0

I 2 2 tg [dst] [a] [b] If R[a] > R[b] R[dst] = 1, Else R[dst] = 0

I 2 3 tge [dst] [a] [b] If R[a] >= R[b] R[dst] = 1, Else R[dst] = 0

I 2 4 tl [dst] [a] [b] If R[a] < R[b] R[dst] = 1, Else R[dst] = 0

I 2 5 tle [dst] [a] [b] If R[a] <= R[b] R[dst] = 1, Else R[dst] = 0

F 3 0 not [dst] [a] If R[a] != 0 R[dst] = 0, Else R[dst] = 1

F 3 1 bool [dst] [a] If R[a] != 0 R[dst] = 1, Else R[dst] = 0

C 3 2 tz [a] If R[a] == 0 PC += 1, Else PC += 2

C 3 3 tnz [a] If R[a] != 0 PC += 1, Else PC += 2

A 4 0 inton Turn Interrupts On, set $STAT
A 4 1 intoff Turn Interrupts Off, set $STAT
A 5 0 brk Debug Breakpoint (capturable by hardware; otherwise, acts as a noop)
I 10 0 add [dst] [a] [b] R[dst] = R[a] + R[b]

I 10 1 sub [dst] [a] [b] R[dst] = R[a] - R[b]

I 10 2 mul [dst] [a] [b] R[dst] = R[a] * R[b]

I 10 3 div [dst] [a] [b] R[dst] = R[a] / R[b]

I 10 4 rem [dst] [a] [b] R[dst] = R[a] % R[b]

G 10 5 neg [dst] [a] R[dst] = -R[a]

I 11 0 band [dst] [a] [b] R[dst] = R[a] & R[b]

I 11 1 bor [dst] [a] [b] R[dst] = R[a] | R[b]

I 11 2 bxor [dst] [a] [b] R[dst] = R[a] ∧ R[b]

I 11 3 bshl [dst] [a] [b] R[dst] = R[a] << R[b]

I 11 4 bshr [dst] [a] [b] R[dst] = R[a] >> R[b]

G 11 5 bnot [dst] [a] R[dst] = ~R[a]

Table 6: Available instruction list for the Jib provides a variety of commands.

There are several different types of instruction formats, which make use of the four byte spots in the
instruction opcode slightly differently. These are provided below in Table 7. As the first byte, Byte 0,
is always the same, it is omitted from the table below. See Table 3 for more details on Byte 0. Most
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commonly, and instruction will only use a single type for all registers present in the operation. Some
instructions, in particular conversion instructions, will use multiple type codes for different registers.

ID Name Byte 1 Byte 2 Byte 3
A No Argument - - -
B Immediate (i16) - Imm (0xF0) Imm (0x0F)
C Single Register Register - -
D Single Register Type Register Type - -
E Single Register Immediate Register Type Imm (0xF0) Imm (0x0F)
F Double Register Register Register -
G Double Register Type Register Type Register -
H Conversion Register Type Register Type -
I Arithmetic Register Type Register Register

Table 7: Instructions can take a variety of different forms depending on the needs of the operation

The assembler also has several commands available, detailed in Table 8. Note that, for the .loadtext
command, the text will be loaded in via the character map provided in Section 3.

Command Description
:[label] Defines a new label associated with the current memory location
.oper [offset] Changes the current assembly offset to the value provided
.load [num] Loads the data value as either an unsigned word (if in hex or positive)

or as a signed word (if negative) in the current memory location
.loadloc [label] Loads the data index associated with the provided label into

the current memory location
.text "[TEXT]" Loads the text into memory, starting at the current memory location,

placing each character into the next subsequent memory location,
with a null-terminator as copied into memory after the text value

.reserve [num] Reserves the the next [num] bytes of memory for data,
filling the memory with zeros

.u8/.u16/.u32 [num] Loads the given unsigned integer at the current location

.i8/.i16/.ui32 [num] Loads the given signed integer at the current location

.f32 [num] Loads the given floating point number at the current location

Table 8: Available assembler commands

Reference names are available to link to the special register values, as listed in Table 9.

Reference Name Register Description
$pc 0 Program Counter
$stat 1 Status Flags
$sp 2 Stack Pointer
$ldo 3 Load Offset
$ret 4 Return
$arg 5 Argument Base

Table 9: Assembler provides shortcuts for commonly-referenced register indices

2.1 Calling Convention

The calling convention allocates the required arguments in a contiguous block of memory, one after
another. The address of the start is placed in the argument base register, and then the function may be
called. For return variables, primitives should be placed directly in the output register. If a larger value
is desired to be output than may be placed directly in the return register, then the desired output address
should be created by the caller and assigned to the return register prior the function call. The function
may then be called, where it will write to the provided address in the return register. In this case, the
return register should not be directly written to, but instead used as a if it were a pointer argument. This
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convention should be followed for both assembly functions as well as higher-level language functions, if
possible, for compatibility between the two.

3 Character Mapping

Jib computers, by default, utilize the following character map. This is similar to the American Standard
Code for Information Interchange (ASCII) format. The Jib character map is defined in Table 10. Any
undefined entries in the character map are considered invalid characters.

Hex Char Hex Char Hex Char Hex Char
00 \0 NULL 20 Space 40 @ 60 ‘

01 21 ! 41 A 61 a

02 22 " 42 B 62 b

03 23 # 43 C 63 c

04 24 $ 44 D 64 d

05 25 % 45 E 65 e

06 26 & 46 F 66 f

07 27 ' 47 G 67 g

08 28 ( 48 H 68 h

09 29 ) 49 I 69 i

0A \n New Line 2A * 4A J 6A j

0B 2B + 4B K 6B k

0C 2C , 4C L 6C l

0D 2D - 4D M 6D m

0E 2E . 4E N 6E n

0F 2F / 4F O 6F o

10 30 0 50 P 70 p

11 31 1 51 Q 71 q

12 32 2 52 R 72 r

13 33 3 53 S 73 s

14 34 4 54 T 74 t

15 35 5 55 U 75 u

16 36 6 56 V 76 v

17 37 7 57 W 77 w

18 38 8 58 X 78 x

19 39 9 59 Y 79 y

1A 3A : 5A Z 7A z

1B 3B ; 5B [ 7B {
1C 3C < 5C \ 7C |

1D 3D = 5D ] 7D }
1E 3E > 5E ^ 7E ~

1F 3F ? 5F 7F

Table 10: Jib character mapping
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4 Devices

Devices are memory-mapped in Jib. This means that reading or writing to special regions in memory
facilitate the communication with these external devices. In a typical Jib computer, the device region
consists of up to 64 devices, starting at memory address 0xA000, with each device allocating up to 32
bytes of memory. Not all devices will make use all the available memory slots for a given device. In these
cases, a memory exception will be provided if any of these invalid addresses are read from or written to.

4.1 Serial Input and Output

The serial input and output device is one of the simplest devices. It essentially consists of a device two
queues, one for input, and another for output. Each of these queues has an internal buffer size of 256
words. If any words are attempted to be added to the queue once either queue is full, no additional data
is read and that data is lost.

The memory mapping for the serial input and output device is provided in Table 11.

Offset Type Read/Write Usage
0 u16 Read Device ID 1
2 u8 Read Provides the current input queue size
3 u8 Read Pops and provides a word off the front of the input queue

If no data is available, will return 0 by default
4 u8 Read Provides the current output queue size
5 u8 Write Pushes a word onto the output queue
6 u8 Write Clears the input queue if the value written is nonzero
7 u8 Write Clears the output queue if the value written is nonzero
8 u8 Read/Write If non-zero, interrupt to write to when input is received

Table 11: Serial Input and Output device provides a simple data structure to read and write data streams

4.2 IRQ Clock

The IRQ clock provides a means to trigger a specific hardware interrupt at a regular interval of clock
cycles. This consists of a settable interval (or set to 0 to disable), as well as a settable interrupt to
trigger. Available in memory is the ability to read any of these two settable parameters, as well as a
readable indication of the current clock cycle count. The memory mapping is provided in Table 12.

Offset Type Read/Write Usage
0 u16 Read Device ID 2
2 u32 Read/Write Gets/sets the clock interval in CPU cycles. Set to 0 to disable.
6 u32 Read Provides the current clock counter in CPU cycles.

Will be between 0 and the above interval.
10 u32 Read/Write The hardware IRQ to trigger, if non-zero.

Table 12: Serial Input and Output device provides a simple data structure to read and write data streams
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5 Examples

The following list some simple example programs that can be run on the Jib.

5.1 Counter

The program listed in Listing 1 provides a basic counter. A target value is placed in register four, and
the value in register three is incremented from 0 to the target value in register four by adding one to the
register each loop. Once the target value has been reached and register three is equal to register four,
the program halts by entering an infinite loop.

; ; Counter Program

; Def ine the hard−r e s e t vector l o c a t i on
. l o ad l o c s t a r t

; Def ine the so f t −r e s e t vector l o c a t i on
. l o ad l o c s t a r t

. oper 0x2000
: f unc t e s t
l d i $ r e t : i 16 97
r e t

; Def ine the s t a r t i n g l o c a t i on
. oper 0x4000
: s t a r t
ldn $sp : u16
. u16 0x1000

; Setup the counter v a r i a b l e s
l d i 6 : i 16 1
l d i 7 : i 16 0
l d i 13 : i 16 0
l d i 15 : i 16 100

; Setup the ta rge t value
jmpri load data

: t a r g e t va l u e
. u16 64 ; 0x7FFF

. a l i gn
: load data
l d r i 8 : u16 t a r g e t va l u e

; Load the funct i on c a l l t e s t
l d r i 15 : u32 f u n c t e s t l o c
jmpri po s t l oad
: f u n c t e s t l o c
. l o ad l o c f unc t e s t
: po s t l oad
c a l l 15
copy $ r e t 12

; Perform the add i t i on and check f o r reach ing the ta rge t
: loop
add 7 : i32 6 7
in t 0
sub 9 : i32 8 7

; Jump back to the add i n s t r u c t i o n i f the
; t a rg e t minus current i s g r ea t e r than zero
t l 10 : i 32 7 8
tz 10
jmpri endloc
jmpri loop

; Otherwise , ente r an i n f i n i t e loop as program complet ion
: endloc
jmpri endloc

Listing 1: Limited counter program
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5.2 Infinite Counter

Listing 2 makes use of some additional functionality, including the use of the register reference names,
to test register reset functionality. It also modifies the program counter outside of the standard jump
command.

; ; I n f i n i t e Counter Program

; Def ine the s t a r t i n g l o c a t i on
. l o ad l o c s t a r t

; Move to the s t a r t i n g l o c a t i on
. oper 0x2000
: s t a r t
ldn $sp : u32
. u32 0x1000

; Load i n i t i a l va lues
l d i 6 : u16 1
l d i 7 : u16 0

: loop ; d e f i n e the main loop
add 7 : u32 7 6
jmpri loop

Listing 2: Infinite counter program with register reference names

5.3 Hello World

Listing 3 provides a program that will infinitely write ”hello, world” to the serial device, expected to
be memory-mapped into the Jib at 0xA000. This makes use of the .loadtext command, which loads
the text, and an additional null-terminator at the end, directly into memory. It also makes use of a
print-string function call to handle printing string values to the serial output devices.

; ; He l lo World Program

; Def ine the hard−r e s e t vector l o c a t i on
. l o ad l o c s t a r t

; Def ine the so f t −r e s e t vector l o c a t i on
. l o ad l o c s t a r t

; Def ine the s t a r t i n g l o c a t i on
. oper 0x1000
: s t a r t
ldn $sp : u16
. u16 0x2000

; Load the s t r i n g l o c a t i on in to memory
ldn 14 : u32
. l o ad l o c s t r h e l l o wo r l d

; Load the funct i on l o c a t i on in to memory
ldn 15 : u32
. l o ad l o c f u n c p r i n t s t r

: loop
copy $arg 14
c a l l 15
jmpri loop

. oper 0x1100
: s t r h e l l o wo r l d
. t ext ” he l l o , world ! ”

. oper 0x1200
: f u n c p r i n t s t r

ldn 13 : u16
. u16 0xA000

; Mark the l o c a t i on to wr i te s e r i a l va lues to
l d i 15 : u16 5
add 15 : u32 15 13

; Load the argument value
copy 6 $arg
l d i 8 : u16 1

: f u n c p r i n t s t r l o o p
ld 7 : u8 6
tz 7

jmpri f u n c p r i n t s t r e nd
sav 15 : u8 7

add 6 : u32 8 6
jmpri f u n c p r i n t s t r l o o p

: f u n c p r i n t s t r e nd
l d i 7 : u16 10
sav 15 : u8 7
r e t

Listing 3: Infinite ”hello, world!” program
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5.4 Serial Echo

Listing 4 provides a serial echo program, which echos any text provided by the default serial input device
back out via the serial echo device. This serial device is expected to be provided at the starting location
0xA000.

; ; S e r i a l Echoer

; Def ine the hard−r e s e t vector l o c a t i on
. l o ad l o c program start

; Def ine the so f t −r e s e t vector l o c a t i on
. l o ad l o c program start

. oper 0x4000
: program start
ldn $sp : u32
. u32 0x1000
ldn 13 : u32
. u32 0xA000

; Mark the l o c a t i on to read input va lues from
l d i 14 : u16 3
add 14 : u32 14 13

; Mark the l o c a t i on to wr i te s e r i a l va lues from
l d i 15 : u16 5
add 15 : u32 15 13

; Mark the l o c a t i on to check the queue s i z e from
l d i 12 : u16 2
add 12 : u32 12 13

: main loop
ld 6 : u8 12
tz 6
jmpri main loop end

ld 7 : u8 14
sav 15 : u8 7

jmpri main loop

: main loop end
jmpri main loop

Listing 4: Serial echo program reads in text characters and immediately outputs via the output device
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6 C/Buoy

C/Buoy is a higher-level language than the raw assembly that provides some nicer tools to program
applications in, at the cost of being less space and time efficient than programming in assembly directly.
It does offer a slightly safer method of computing, however, as it provides a more traditional function
call structure, variables, and scopes that help abstract away some of the hardware and provide some
simple limits on what the user is allowed to do.

Note that, in this case, both functions and variables share the same namespace. This allows for easy
use of function pointers by variable names, though currently only names are allowed, and no expressions
may be used as yet.

Program →
〈BaseStatement〉

BaseStatement →
〈BaseStatement〉〈BaseStatement〉
fn FunctionName(Variable[, Variable. . . ]) { 〈StatementList〉}
asmfn FunctionName(Variable[, Variable. . . ) { [〈WordLiteral; 〉. . . ] }
global VarType Variable[ = 〈BaseExpression〉];

Statement →
def Variable: 〈VarType〉[ = 〈BaseExpression〉];
return;
return 〈BaseExpression〉;
〈BaseExpression〉;
{ 〈StatementList〉}
if (〈BaseExpression〉) 〈Statement〉
if (〈BaseExpression〉) 〈Statement〉else 〈Statement〉
while (〈BaseExpression〉) 〈Statement〉

StatementList →
〈Statement〉
〈Statement〉〈Statement〉

BaseExpression →
〈Expression〉= 〈BaseExpression〉
〈Expression〉〈BinaryOp〉〈Expression〉
〈Expression〉

Expression →
Variable

〈Literal〉
〈UnaryOp〉〈Expression〉
FunctionName([〈BaseExpression〉[, 〈BaseExpression〉,. . . ]])
(〈BaseExpression〉)
〈Expression 〉[〈Expression 〉]

BinaryOp →
+, -, *, /, <, >, <=, >=, &&, ||, &, |, ==, !=

UnaryOp →
*, -, +, !, &, ˜

VarType →
〈PrimitiveType 〉
*〈VarType 〉
[〈NumericValue 〉]〈VarType 〉

This makes use of a few extra conventions. At the start of each function, stack space is reserved both
for any local variables, as well as any temporary variables, that are required. A few extra registers are
defined in the Table 1.

When returning a parameter, if the parameter is a primitive, it is returned by value in the return
register directly. However, if it is a structure, the address of the temporary to write into is written into
the return register before the function call. This is typically a temporary allocated on the stack, as
mentioned above.

A simple preprocessor allows for mixing multiple files into one source unit. This follows a similar
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syntax to the C preprocessor, albeit much simpler.

• #include <file> includes the provided file into the current source.

• #ifdef <name> and #ifndef <name> only includes the subsequent lines if the name is defined or
not defined. Must have a matching #endif.

• #else is coupled with an #if* statement to include if the original statement is false. Only one
may be provided per #if* statement.

• #endif ends an if statement.

• #define <name> marks the provided name as defined.

• #undef <name> marks the provided name as undefined.

6.1 A Simple Example

This provides an example program in Listing 5 below, which provides an example of printing text to a
serial device, both using a string literal, but also converting numeric values into their text equivalents.

g l oba l TEST STR: ∗u8 = ”Hello , world ! ” ;
g l oba l SERIAL OUT LOC: ∗u8 = 0xA000u32 + 5 ;

fn pr in t ( c : ∗u8 ) void {
whi le (∗ c != 0) {

∗SERIAL OUT LOC = ∗c ;
c = c + 1 ;

}
}

fn p r i n t d i g i t ( v : u8 ) void {
i f ( v < 10) {

∗SERIAL OUT LOC = ’0 ’ + v ;
} e l s e {

∗SERIAL OUT LOC = ’ ? ’ ;
}

}

fn p r i n t u i n t (v : u32 ) void {
def chars : [ 1 2 ] u8 ;
de f cp : ∗u8 = &chars ;
i f ( v == 0) {

p r i n t d i g i t ( 0 ) ;
} e l s e {

whi le (v != 0) {
∗cp = v % 10;
v = v / 10 ;
cp = cp + 1 ;

}
whi le ( cp != &chars [ 0 ] ) {

cp = cp − 1 ;
p r i n t d i g i t (∗ cp ) ;

}
}

}

fn main ( ) void {
p r i n t u i n t ( s . a ) ;
p r in t (”\n ” ) ;
p r i n t u i n t ( s . b ) ;
p r in t (”\n ” ) ;
p r i n t u i n t ( 1234 ) ;
p r in t (”\n ” ) ;
p r in t (TEST STR) ;
p r in t (”\n ” ) ;

}

Listing 5: Example C/Buoy program for printing out a string to a serial output device

C/Buoy allows working with structs, primitives, functions, and more. This allows for an easier
programming experience, at the cost of occasionally some additional generated machine code, resulting
in slightly larger execution times, than could necessarily be done by hand in Jib assembly.

6.2 Assembly Integration

To allow for additional optimization, Jib assembly code can also be mixed in with functions to increase
the speed of certain functions. As the compiler is currently not an optimizing compiler, this provides
the opportunity to convert commonly-used smaller functions into compact assembly code to increase the
speed of execution. Identifiers from the overall C/Buoy program can be mixed into the assembly code
by using replacement characters, as denoted in Table 13.

For example, the above listing could have the print function replaced by the print function in List 6
and be considerably more efficient.
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Parameter Format Result
Global Variable / %{IDENTIFIER}% Provides the entry/access label for
Function Location the provided function or global variable
Global Literal Value ^{IDENTIFIER}^ Provides the raw value of the

provided literal/constant at the global scope
Local Variable Offset @{IDENTIFIER}@ Provides the offset (from the argument base)

for the given local variable or function parameter
Member Offset &{IDENTIFIER}& Provides the offset of the provided

structure member value
sizeof #{IDENTIFIER}# Provides the sizeof for the provided

type or symbol

Table 13: Formats for parameters that are replaced in the assembly code with the resulting value for
better interoperability with the overall function

#i f n d e f K SERIAL IO
#de f i n e K SERIAL IO

g loba l SERIAL IN SIZE : ∗u8 = 0xA000u32 + 2 ;
g l oba l SERIAL IN LOC : ∗u8 = 0xA000u32 + 3 ;
g l oba l SERIAL OUT LOC: ∗u8 = 0xA000u32 + 5 ;

#i f d e f K SERIAL IO CBUOY PRINT
fn pr in t ( c : ∗u8 ) void {

whi le (∗ c != 0) {
∗SERIAL OUT LOC = ∗c ;
c = c + 1 ;

}
}
#e l s e
asmfn pr in t ( c : ∗u8 ) void {

”push $ s ta t ” ;
” i n t o f f ” ;
” ldn 8 : u32 ” ;
” . l o ad l o c %{SERIAL OUT LOC}%”;
” ld 8 : u32 8” ;
” . a l i gn ” ;
” l d i 9 : u16 1” ;
” ld 10 : u32 $arg ” ;
” l d i 11 : u16 @{c}@”;
”add 10 : u32 10 11” ;
” ld 11 : u8 10” ;
” tz 11” ;
” jmpri 16” ;
” sav 8 : u8 11” ;
”add 10 : u32 10 9” ;
” jmpri −20”;
”popr $ s ta t ” ;
” r e t ” ;

}
#end i f

fn p r i n t d i g i t ( v : u8 ) void {
i f ( v < 10) {

∗SERIAL OUT LOC = ’0 ’ + v ;
} e l s e {

∗SERIAL OUT LOC = ’ ? ’ ;
}

}

fn p r i n t u i n t (v : u32 ) void {
def chars : [ 1 2 ] u8 ;
de f cp : ∗u8 = &chars ;
i f ( v == 0) {

p r i n t d i g i t ( 0 ) ;
} e l s e {

whi le (v != 0) {
∗cp = v % 10;
v = v / 10 ;
cp = cp + 1 ;

}
whi le ( cp != &chars [ 0 ] ) {

cp = cp − 1 ;
p r i n t d i g i t (∗ cp ) ;

}
}

}

fn p r i n t s t a t (name : ∗u8 , v : u32 ) void {
pr in t (name ) ;
p r in t ( ” : ” ) ;
p r i n t u i n t (v ) ;
p r in t (”\n ” ) ;

}

#end i f // K SERIAL IO

Listing 6: Replacement print function to improve the speed of the resulting output

The original program in Listing 5 runs to a halt in 1320 CPU cycles. After replacing the print function
with the one in Listing 6, the same program completes to a halt in 1010 CPU cycles. Used appropriately,
similar optimizations can be made throughout program code to target and improve execution time for
different functions as-needed. This also the programmer to slowly learn assembly language by starting
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with a higher-level programming language as an entry-point, and then working to the lower-level func-
tionality gradually over time as they get familiar with the system. Assembly language is required for
several key pieces of functionality, including setting up things to manage the stack directly - such as
creating threads - and for interfacing more efficiently with hardware input/output devices.

6.3 Threading

Through direct modification of the stack, we can create a set of utilities to swap between different threads
at runtime. Listing 7 provides several functions. k tsk init provides means to register a new thread.
k tsk main is a function that is called to transition from the main thread into the inner executing
threads. k tsk yield is both an interrupt handler (for a periodic device like a timer) and also a function
that may be called by threaded functions to yield their execution to the next thread. This is simple
round-robin threading, so there is no scheduler implemented in this example.

#i f n d e f K TSK
#de f i n e K TSK

#inc lude s e r i a l i o . cb

const K TSK STACK SIZE : u32 = 1024;
const K TSK STACK NUM: u32 = 4 ;
g l oba l K TSK THREAD NUM: u32 = 0 ;
g l oba l K TSK THREAD CURR: u32 = 0 ;

s t r u c t k t s k t h r e ad s t a c k t {
l a s t p t r : u32 ;
s tack : [K TSK STACK SIZE ] u8 ;

}

g l oba l K TSK THREAD STACK: [K TSK STACK NUM] k t s k t h r e ad s t a c k t ;

asmfn k tsk main ( ) void {
” ldn 8 : u32 ” ;
” . l o ad l o c %{K TSK THREAD NUM}%”;
” ld 8 : u32 8” ;
” tz 8” ;
” r e t ” ;
” ldn 9 : u32 ” ;
” . l o ad l o c %{K TSK THREAD STACK}%”;
” ld 9 : u32 9” ;
”copy $sp 9” ;
” r e t ” ;

}

asmfn k t s k y i e l d ( ) void {
” i n t o f f ” ;
” ; Increment K TSK THREAD NUM to next thread ” ;
” ldn 8 : u32 ” ;
” . l o ad l o c %{K TSK THREAD NUM}%”;
” ld 8 : u32 8” ;
” ldn 9 : u32 ” ;
” . l o ad l o c %{K TSK THREAD CURR}%”;
” ld 10 : u32 9” ;
”copy 16 10” ;
” l d i 11 : u16 1” ;
”add 10 : u32 10 11” ;
”rem 10 : u32 10 8” ;
” sav 9 : u32 10” ;
” ; Swap stack po in te r ” ;
” ; 10 = new po inte r ” ;
” ; 16 = old po in te r ” ;
” l d i 8 : u16 #{k t s k t h r e ad s t a c k t }#”;
”mul 10 : u32 10 8” ;
”mul 16 : u32 16 8” ;
” ldn 9 : u32 ” ;
” . l o ad l o c %{K TSK THREAD STACK}%”;
”add 10 : u32 10 9” ;
”add 16 : u32 16 9” ;
” sav 16 : u32 $sp ” ;
” ld $sp : u32 10” ;
” inton ” ;
” r e t i n t ” ;

}

fn k t s k i n i t ( func : fn ( ) void ) void {
i f (K TSK THREAD NUM < K TSK STACK NUM) {

def current : ∗ k t s k t h r e ad s t a c k t = &K TSK THREAD STACK[K TSK THREAD NUM] ;
de f cu r r en t s t a ck : ∗u32 = &((∗ current ) . s tack ) ;
p r i n t s t a t (” Base Struct ” , cur rent ) ;
p r i n t s t a t (” Base Stack ” , cu r r en t s t a ck ) ;
cu r r en t s t a ck [ 0 ] = func ;
cu r r en t s t a ck [ 1 ] = 1 ; // Enable In t e r rup t s on the new stack
p r i n t s t a t (” Function Location ” , func : u32 ) ;
cu r r en t s t a ck [ 2 ] = ( cu r r en t s t a ck + 32) : u32 ;
current−>l a s t p t r = cu r r en t s t a ck [ 2 ] ;
p r i n t s t a t (” Stack Location ” , (∗ current ) . l a s t p t r ) ;
p r i n t s t a t (” Stack S i ze ” , ( ( (∗ current ) . l a s t p t r ) : u32 ) − ( cu r r en t s t a ck : u32 ) ) ;
K TSK THREAD NUM = K TSK THREAD NUM + 1;
p r i n t s t a t (” Current Thread Count ” , K TSK THREAD NUM) ;
pr in t (”\n ” ) ;

} e l s e {
pr in t (” Exceed al lowed thread count\n ” ) ;

}
}

#end i f // K TSK

Listing 7: Utilities that use a mix of Jib assembly and C/Buoy provide mechanisms to create threads at
runtime and swich between threads, either through preemptive interrupts or task yielding.
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7 Tools

Several tools can help in the development of Jib programs.

7.1 V/Jib

One useful tool is V/Jib, combines together a basic assembler, CPU emulator, and memory inspector
into a single program. The main window can be seen in Figure 1.

Figure 1: Main window of V/Jib provides common tools for program writing
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